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ABSTRACT
This paper proposes a statistical mechanism to analyze the
detector coverage in a negative selection algorithm, namely
a quantitative measurement of a detector set’s capability
to detect nonself data. This novel method has the advan-
tage of statistical confidence in the estimation of the actual
coverage. Furthermore, unlike the existing analysis works
of negative selection, it doesn’t depend on specific detector
representation and generation algorithm. Not only can it
be implemented as a procedure independent from the steps
to generate detectors, the experiments in this paper showed
that it can also be tightly integrated into the detector gen-
eration algorithm to control the number of detectors.

Categories and Subject Descriptors: I.2 [Computing
Methodologies]: Artificial Intelligence

General Terms: Algorithms, Performance, Reliability.

Keywords: Negative selection, detector coverage, hypoth-
esis testing.

1. INTRODUCTION
Artificial negative selection is a soft computational paradigm

inspired by natural immune system’s self/nonself discrimi-
nation mechanism. It was designed by modeling the bio-
logical process in which T -cells mature in thymus through
being censored against self cells[8]. As one of the earliest
models of artificial immune systems (AIS), it is often sim-
ply called negative selection (algorithm) with the descriptive
“artificial” dropped [4, 9, 10].

In a negative selection algorithm, a collection of detectors,
usually called detector set, is used to check incoming data
items to be normal (self) or not (nonself). Whether the de-
tector set can detect all the anomalies, or how many of all
the anomalies it can detect, is the main concern. The pro-
portion of the nonself space that is covered or recognized by
the detector set is the measure of its detection power. This
proportion is called detector coverage. It is not trivial to
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determine the coverage quantitatively for a specific negative
selection algorithm, or to decide the necessary number and
distribution of detectors for a given coverage.

This paper describes a statistical method to estimate de-
tector coverage. A real-valued negative selection algorithm,
V-detector [16], is used as the platform to implement this
idea. It proved to be an effective and beneficial supplement
to the negative selection algorithm. It is possible to imple-
ment a similar mechanism in other representations like the
popular binary string representation. The same methodol-
ogy also applies to different algorithms in which the similar
issue of proportion estimation exists.

This method is especially useful when the near-perfect
coverage is not necessary and alternative method may be
inaccurate about the coverage.

2. RELATED WORKS
Statistical methods were used in several works in AIS area.

Some earlier works like [8, 5] used matching probability or
failure probability to decide or evaluate the number of de-
tectors. That method was based on the specific detector
scheme. Furthermore, it was oriented to general analysis of
the relation between the number of detectors and the cover-
age. A given detector set is not in the question. While other
works may have focused on different aspects, e.g. lower
bound for the fault probability [17], they still used statis-
tics from the same point of view. On the other hand, this
paper’s proposal is to use statistical tools to estimate the
coverage of any given detector set, or more generally, any
detection mechanism in which individual point can be ver-
ified but there is no explicit algorithm to evaluate the rate
of success.

Considering the multiple issues involved, the work de-
scribed here evolved out of concepts from a few different
fields.

2.1 Real-valued Negative Selection Algorithms
While more research in negative selection algorithms uses

binary representation [1, 6], real-valued representation has
its unique role. It is relatively less explored due to the fact
that the search space is usually continuous and hard to an-
alyze by enumerative combinatorics. Nevertheless, it is nec-
essary for many applications that cannot be represented ef-
fectively in binary form. For those problems that are natu-
rally real valued, real-valued representation makes it easier
to interpret the results and usually results in more stable
algorithm by maintaining affinity in representation space.
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In real-valued negative selection algorithms, the detectors
are represented as hyperspheres or hyper-rectangles. They
are generated by the original method of randomly generat-
ing and then eliminating [11] or other methods like genetic
algorithm [3]. Some algorithms involve resizing and redistri-
bution of the initial detectors. Most of the works considered
a unit hypercube in n-dimensional space, [0, 1]n, as the uni-
verse space.

V-detector algorithm [16] generates the detector set in one
run. It took advantage of variable size and avoided the need
to redistribute detectors for the purpose of minimal overlap.
Estimate of detector coverage was used as a criterion to de-
cide when the number of detectors is adequate, comparing
to the previous works of either presetting the number or de-
ciding the number by rough geometric estimation. Although
the estimation in [16] is rather simple statistically, it leads
to the work in this paper.

2.2 Statistical Inference
Estimation of detector coverage in [16] is based on point

estimation, which doesn’t tell us how much or how likely the
estimate may be different from the population proportion -
in this case, the actual detector coverage.

To obtain a more informative estimate of population pa-
rameters, more formal statistical inference is desirable [14,
7]. The Central limit theorem in statistics says that if X is
a random variable having finite mean µ and finite variance
σ2, then the probability distribution of the random variable
(x̄−µ)/(σ

√
n) approaches the standard normal distribution

as the sample size n becomes infinite [13]. In other words,
although we don’t get the same mean every time we repeat
sampling of a fixed size, the distribution of these means is
close to a normal distribution. The standard deviation of
the sampling distribution for a given sample size is equal
to the population standard deviation divided by the square
root of the sample size.

The central limit theorem justifies using a normal distri-
bution as an approximation for the distribution of x̄ when
n is sufficiently large. There are two apparent sources of
error in using the normal distribution as an approximation
of the binomial distribution: (1) The normal distribution is
always symmetrical; the binomial distribution is symmetric
only if the probability of one outcome, p, is 0.5. (2)The
normal distribution is continuous; the binomial distribution
is discrete. A rule of thumb taking into account both the
problems of asymmetry and discreteness is to use the nor-
mal distribution approximation only if np > 5, n(1− p) > 5
and n > 10.

There are alternative distributions that can be used to
deal with the asymmetry problem, and there are mathemat-
ically strict corrections for discontinuity too. However, these
are not the main issues in our application here even though
the issue of asymmetry is in fact not negligible. Because the
proportion of covered nonself points, p, is the variable to be
considered, it is very likely that we need to consider a large
p, for example, 90% or 99%. Fortunately, we can circum-
vent the issue with proper strategy in our proposed algo-
rithm considering the fact that we care more about enough
coverage than its exact value.

2.2.1 Confidence interval
The most basic statistical inference is point estimation,

in which we use a sample statistic, for example mean or

proportion, as the estimator of the population parameter.
We need to know the probability, namely confidence level,
that the population parameter falls within the range called
confidence interval around the sample parameter [7, 14].

Generally, we can conclude that

p̂ − E < p < p̂ + E, (1)

where p is the population parameter, p̂ is the sample statis-
tic,

E = zα/2

√

p̂q̂

n
(2)

is the margin of error, n is the sample size, and q̂ = 1 − p̂.
In the case of estimating detector coverage, we are more
interested in making a conclusion about the lower limit of
coverage, p > pmin, where pmin is the minimum coverage we
can presume with some certainty. So we can use a one-side
confidence interval

p > p̂ − E, (3)

where

E = zα

√

p̂q̂

n
. (4)

To ensure the assumption that the binomial random variable
is approximately normally distributed with the mean µ = np
and standard deviation σ =

√
npq, we should have np ≥ 5,

nq ≥ 5.
In Equation (1), zα/2 is the z score for a confidence level of

1−α/2 - the positive standard z value that separates an area
of α/2 in the right tail of the standard normal distribution
curve. For a standard normal distribution, the probability
of −zα/2 ≤ x ≤ zα/2, P (−zα/2 ≤ x ≤ zα/2) = 1 − α. The
probability of x ≤ zα/2, P (x ≤ zα/2) = 1 − α/2. Similarly,
zα in Equation (4) is where P (x ≤ zα) = 1 − α.

2.2.2 Hypothesis Testing
Hypothesis testing is another approach of statistical infer-

ence also based on Equation (3). It fits our purpose better
because the goal here is to know when so we can stop gen-
erating or including more detectors.

In conducting a statistical hypothesis test, we need to
identify the null hypothesis. We assume that Type I Error
(rejecting the true null hypothesis) is more costly than Type
II Error (accepting a false null hypothesis).

The normal procedure of hypothesis testing involves the
following steps:

1. State the null hypothesis and alternative hypothesis.
The null hypothesis is the statement that we’d rather
take as true if there is not strong enough evidence
showing otherwise.

2. Determine the cost associated with the two types of
decision-making errors.

3. Choose the significant level, α. That is the maximum
probability we are willing to accept in making Type I
Error. Typical values are 0.05 or 0.01.

4. Collect the data and compute the sample statistic. To
test based on proportion we can use z score

z =
p̂ − p
√

pq
n

.
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5. Reject or accept the null hypothesis. The traditional
method is to check whether the test statistic is in crit-
ical region (z > zα) or not. If z > zα, we reject the
null hypothesis. An alternative way is to use a p-value
test, which is easier [14].

2.3 Learning Theory Point of View
One of the frameworks of learning, Probably Approxi-

mately Correct learning (PAC learning), was proposed so
that learning can be analyzed mathematically [2, 12]. In
terms of PAC learning, successful learning of an unknown
target concept should entail obtaining, with high probabil-
ity, a hypothesis that is a good approximation of it. Self/nonself
discrimination algorithms, including the negative selection
algorithm discussed in this paper, can be examined with
this framework. Accuracy, or how good the approximation
is, is described by ǫ: the hypothesis returned h should satisfy
error(h) ≤ ǫ. Confidence, or the chance we can correctly
obtain the hypothesis h, is described by σ: the probability
of returning h is at least 1−σ. Probability of distribution on
the instance space plays an important role in the language
of PAC learning

What is most relevant to our discussion here is the basic
assumptions we must make about the negative selection al-
gorithm and the training data it takes. Previous works in
this area, especially those were not based on binary repre-
sentation and did not assume all self features are present
in training data, are hard to compare with one another
shoulder-to-shoulder due to the lack of equivalent assump-
tions.

In the following analysis, we assume

• Both self and nonself points appear in some bounded
n-dimensional real space. For simplicity, let us assume
it is [0, 1]n.

• Some finite number of self samples are provided as in-
put. They are randomly distributed over the self re-
gion.

• The training data is noise free - meaning all the self
samples are real self point. This is not necessary in
principle, but used to simplify the discussion.

• To evaluate the detection performance, the testing data
are finite number of random points over the entire
space in question described above. Each of those points
can be verified to be self or nonself.

Considering the framework of PAC learning, a negative
selection algorithm is a PAC algorithm under certain condi-
tions. Although we assume that adequate self samples are
available over the entire self region, specific distribution is
not required. On the other hand, test data over the entire
space are used to evaluate the performance but definitely
not mandatory to use the algorithm.

3. ALGORITHM

3.1 Coverage - Proportion - Probability

Definition 1. The detector coverage of a given detector set
is defined as the ratio of the volume of the nonself region that
can be recognized by any detector in the detector set to the
volume of the entire nonself region.
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Figure 1: Negative selection algorithm using real-
valued representation: Different regions

Generally, it can be written as

p =

∫

~x∈D
d~x

∫

~x∈S
d~x

,

where S is the set of nonself points and D is the set of nonself
points that are recognized by the detectors. In the case of
2-dimensional continuous space, it is reduced to the ratio of
the area covered to the area of the entire nonself region

p =

∫∫

(x,y)∈D
dxdy

∫∫

x∈S
dxdy

.

If the space in question is discrete and finite, it can re-
written as

p =
|D|
∣

∣S
∣

∣

,

where |A| denotes the cardinality of a set A.
Figure 1 illustrates the three regions in the question: self

region, covered nonself region, and uncovered nonself region
in a 2-D diagram. The area without hatched shade on the
right-side of the diagram is S̄ and the dotted area cover by
circular detectors are D.

In statistical term, the points of the nonself region are
our population. Generally speaking, the population size is
infinite. The probability of each point to be covered by
detectors is a binomial distribution. The detector coverage
is the same as the proportion of the covered points, which
equals to the probability that a random point is a covered
point. Assuming all the points from the entire nonself region
are equally likely to be chosen in a random sampling process,
the probability of a sample point being recognized by the
detectors is thus equal to p. For a sample of fixed size, the
proportion of covered points is

p̂ =

∣

∣

∣
D̂

∣

∣

∣

∣

∣

∣
Ŝ

∣

∣

∣

,
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where Ŝ is the sample; and D̂ is the set of sample points
that are recognized by the detectors. |Ŝ| is thus the sample
size. p̂ is the sample statistic that is the point estimate of
the population proportion.

3.2 Integration of Hypothesis Testing and De-
tector Generation

The main idea of this method is to finish generating detec-
tors when the coverage is close enough to the target value.
This contrasts with other works that replies on the number
of detectors to provide enough coverage.

The original V-detector [16] has a simple estimate to stop
the detector generation procedure. Random points are gen-
erated to be detector candidates. If it is a nonself point but
not covered, a new detector is generated on it. If it is a
covered nonself point, it is discarded as a candidate but the
attempt is recorded in a counter which will be used to es-
timate the coverage. If the counter of consecutive attempts
that fall on covered point reaches a limit m, the genera-
tion stage finishes with the belief that the coverage is large
enough. m is not preset. It is decided by the target coverage.

m =
1

1 − α
, (5)

where α is the target coverage, a control parameter. Equa-
tion (5) is explained as following. If there is 1 uncovered
point in a sample of size m′, the point estimate of propor-
tion of uncovered region is 1

m′ , and the estimate of coverage
is

α′ = 1 − 1

m′
. (6)

If in fact there is 0 uncovered point in a sample of size m′, we
have a better than average chance that the actual coverage
is larger than α′. Because m is decided by Equation (5),
when we see m consecutive points that are all covered, we
can estimate that the actual coverage is more likely to be
at least α. As mentioned before, that is based on point
estimation without a confidence interval. Comparing with
the new algorithm, we call that method “näıve estimate”.

To extend to more strict statistical inference, estimating
with a confidence interval directly does not fit the problem
as well as hypothesis testing because our goal to make a
decision of adding more detector or not. What makes this
paper’s method different from traditional statistical infer-
ence is that the testing can be done as part of the detec-
tor generation algorithm. Although it may be implemented
as a relatively independent module, we still have to face
a dilemma: the detector coverage or the proportion to be
estimated is actually changing during the detector genera-
tion. So we need to design a process in which the hypothesis
testing happens only when we temporarily stop adding new
detectors. Otherwise, the testing will be meaningless. At
the same time, we also try to reuse the random samples we
use in hypothesis testing as the candidate detectors. This
doubles the advantage of an algorithm of hypothesis testing
integrated in V-detector.

In the case of estimating coverage, the null hypothesis
would be “The coverage of the non-self region by all the
existing detectors is below percentage pmin.” If we accept
the null hypothesis, we would include more detectors. If the
null hypothesis is actually false, the cost of a Type II Error
would be more unnecessary detectors. On the other hand,
if we reject the null hypothesis by mistake, we would end

Begin

Choose p and α

Decide sample size n
by n > max(5/p, 5/(1 − p))

N = 0, x = 0

Sample a point

Self?

N = N + 1

Covered? Save the candidates

x = x + 1

z = x√
npq

−
√ np

q

z > zα? N = n?

End: enough coverage
Accept all saved

candidates
as new detectors

No

Yes

No

Yes

No

Yes

Figure 2: V-detector generation algorithm with sta-
tistical estimate of coverage

up with lower than actual coverage. The latter, so called
Type I Error, is exactly our concern. The significant level α
is the maximum acceptable probability that we may make
a Type I Error - end up with fewer than needed detectors.
We need a fixed sample size to do the hypothesis testing. If
the conclusion is that we need more detectors, we take all
the sample points as detector candidates. This largely saves
the cost of the entire algorithm.

Figure 2 shows the diagram of the modified V-detector
that uses hypothesis testing to estimate the detector cover-
age.

To guarantee the assumption np ≥ 5 and nq ≡ n(1−p) ≥
5 is valid, we can choose sample size by

n > max(5/p, 5/(1 − p)).

If there is x points covered, p̂ = x/n, where n is the sample
size, we have

z =
x√
npq

−
√

np

q
.

During the procedure to test more points, x will either in-
crease (when the point is covered) or stay unchanged (when
the point is uncovered). So does z. Before the procedure
finishes for all n points, if z based on the tested points is
larger than zα, it is enough to reject the null hypothesis
and claim enough coverage. At that point, the test can be
stopped. Since the ultimate conclusion from the procedure
is either rejection or acceptance of the null hypothesis, not
the estimate of p and confidence interval, it is not necessary
to finish trying to get a “better” answer.
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Table 1: Shapes of self area
Type of Shape Geometric Parameters

Cross thickness and location of the cross
Ring outer and inner radius
Stripe width

Intersection cross size and location, circle radius
Pentagram size (radius of circumscribed circle)

If the the assumption nq > 5 is in fact invalid because the
real p is larger than the p we used, then the actual coverage
is more than what we want to test. Our confidence in the
coverage is not comprised in this case. If the assumption
np > 5 is in fact invalid because p is so small, the hypothesis
test will pass only when it could pass the actual non-normal
distribution. Because the probability curve skew to the left
side (origin side), zα would be smaller than zα for normal
distribution. If z does not pass this skewed zα, it will not
pass normal distribution’s zα either: z ≤ zα|p<5/n ≤ zα.

4. EXPERIMENTS AND DISCUSSION
To test the algorithm described in the previous section,

experiments were carried out using 2-dimensional synthetic
data. Over the unit square [0, 1]2, various shapes are used
as the ‘real’ self region in these experiments. They belong
to one of the five types listed in Table 1, which also shows
the geometric parameters that extend each type to different
sizes or variations. Figure 3 shows the basic shapes of the
five types of self region.

A fixed number of random points from the self region are
used as the self sample to generate the detector set. Another
number of random points, in which some are self, some non-
self, are used to test the detection performance of the de-
tector set. Figure 4 shows examples of training data (self
samples) and test data. (a) is a self sample of 100 points.
(b) is a self sample of 1000 points. (c) is 1000 test data
including both self points and nonself points. It can be pre-
dicted from this figure that the number of training data will
have obvious influence on the detection results.

There exist two versions of V-detector algorithms. The
earlier version treats each training data point (self sample)
individually [16]. We call it point-wise V-detector. A later
version brought out a new advantage of negative selection
algorithm so that it is able to detect the boundary of self
region. We call it boundary-aware V-detector [15].

Figure 5 shows the detector-covered area using these two
different numbers of detectors (boundary-aware algorithm,
hypothesis testing, 99% target coverage). (a) is 100 point;
(b) is 1000 points. When other control parameters are dif-
ferent, e.g. using point-wise algorithm, the covered area will
not be the same as in Figure 5, but the number of detectors
still plays an important role.

The influence of control parameters and difference of strate-
gies were explored with more experiments. From the data
side, the difference in results may come from: number of
sample points and different shapes (including size) of the self
region. From the algorithm side, the difference may come
from: target coverage, significant level of hypothesis testing,
estimate methods (näıve estimate or hypothesis testing), self
threshold, and V-detector strategy (point-wise or boundary-
aware). The results we want to compare are detection rate,
which is the main concern, and false alarm rate and number
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Figure 6: Influence of target coverage

of detectors. Significant level α is set to be 0.1 in the results
reported in this paper.

Figure 6 shows some results of detection rate for target
coverages from 90% through 99%. The number of sample
points is 1000. The boundary-aware algorithm was used.
The self region is a pentagram whose radius of circumscribed
circle is 1/3. The plot shows the mean of 100 repeated
tests; standard deviation is shown as error bar on the graph.
Results obtained with näıve estimate and hypothesis testing
are plotted together to compare. Hypothesis testing has a
small but consistent advantage over the näıve method.

Figures 7 and 8 show the detection rate and false alarm
rate, respectively, comparing 100 points and 1000 points
of the self sample. The boundary-aware algorithm plus hy-
pothesis testing was used. The difference in detection rate
is rather small, but the false alarm using 100 points is sig-
nificantly higher. On the other hand, if the point-wise algo-
rithm is used, the false alarm rate can be controlled over a
range of self thresholds, but the detection rate of 100 points
will be much lower. It is not surprising that the number of
self sample points has a major affect on detection perfor-
mance. That has little to do with detector generation and
detection process. Similarly, false alarms (false positive) also
mainly come from the definition of self that is totally based
on these discrete samples.

Figure 9 shows the difference between the point-wise and
boundary-aware V-detector when all the other settings are
the same. Figure 10 shows the false alarm rate. Although
the boundary-aware algorithm has higher false alarm at very
low self threshold, it is not an issue generally. The differ-
ence in the two strategies’ performance is related to the fact
that the concept of ‘self’ here is defined by the discrete self
points. The boundary-aware V-detector improves the re-
sult obviously when detecting the boundary of self region is
important. That advantage largely depends on the unique
process of negative selection algorithm.

Figure 11 shows the detection rate results of different
shapes of self regions for a range of self threshold. Totally 10
different shapes are shown in this figure including all the five
types in Figure 3 plus their complementary shapes. The re-
sults are consistent without major difference. 100 self points
were used to train in those results. When 1000 points were
used, the difference were even smaller.
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Figure 3: Different types of shape

(a) 100 points of self sample (b) 1000 points of self sample (c) 1000 points of test data

Figure 4: Self samples and test data

(a) Trained with 100 points (b) Trained with 1000 points

Figure 5: Detector-covered area

Table 2: Performance difference between näıve estimate and hypothesis testing
detection rate/σ false alarm rate/σ number of detectors/σ

näıve estimate 95.18%/1.35% 0.72%/0.86% 19.98/2.86
hypothesis testing 99.35%/0.17% 3.41%/0.96% 500/0
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Figure 7: Detection rate of different training size
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Figure 8: False alarm rate of different training size
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Figure 9: Two strategies in V-detector : Detection
Rate
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Figure 10: Two strategies in V-detector : False
Alarm Rate
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Figure 11: Detection rate for various shapes of self
region
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Figure 12 shows the number of detectors used for ring
shape of self region generated using 100 training points. At
least two characteristics are noteworthy. One, the number is
near constant as long as the self threshold is larger than 0.05;
two, hypothesis testing resulted in more detectors. The rea-
son for the second inclination is that the detector candidates
must be processed in groups of proper sample size required
by hypothesis testing. That disadvantage is limited and will
not scale with the number of training points or other pa-
rameters.

Table 2 again highlights the difference between näıve es-
timate and hypothesis testing. The results were from the
following setting: pentagram-shaped self region; boundary-
aware strategy; 1000 self sample points; target coverage
99%; self threshold 0.05. The numbers are the mean of 100
repeated tests and the standard deviation σ is also tabulated
with the corresponding variables.

5. CONCLUSIONS
A statistical approach is investigated to analyze the detec-

tor coverage in a negative selection algorithm. It makes the
algorithm more reliable. An effective strategy was developed
for implementation.

The unique feature of a real-value negative selection algo-
rithm, V-detector, makes it a prefect platform for hypothesis
testing: (1) Generation of detectors in one run makes the
algorithm more stable and easier to use; (2) Coverage esti-
mate makes negative selection more reliable and saves the
need of detector adjustment; (3) Hypothesis testing is a ma-
jor development over the earlier näıve estimation.

Another advantage of this method is that it applies to any
detector schemes and detection mechanisms as long as it is
verifiable whether a sample point is covered or not. In V-
detector, it is even better since it can be implemented partly
as a byproduct of the generation process without adding
much extra computational cost.

The strategy can be extended to different representations.
For example, extension to binary representation will make
this method applicable to variety of applications.

Many issues in the performance of negative selection al-
gorithms are based on the properties of the data. For the
comparison and analysis of negative selection algorithms to
be more meaningful, it is important to develop a framework
concerning the fundamental assumptions and to categorize
the type of data to be processed.
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